Il y a quelques mois avait été émise l’hypothèse que le mystérieux objet interstellaire ʻOumuamua soit composé de glace de dihydrogène. Cette hypothèse est aujourd’hui rejetée. Un tel iceberg de dihydrogène n’aurait pas pu survivre à son voyage depuis son lieu de formation jusqu’au Système solaire.

En juin dernier (voir le précédent article ci-dessous), nous vous annoncions l’hypothèse de Darryl Seligman et Gregory Laughlin selon laquelle ʻOumuamua pourrait être constitué en grande partie de glace de dihydrogène (H2). Cette hypothèse reposait sur le fait que l’objet interstellaire avait montré une accélération non gravitationnelle telle qu’on peut en détecter pour des comètes, sans pour autant montrer d’activité cométaire. Si ʻOumuamua était un iceberg d’hydrogène, alors l’hydrogène à l’origine de cette accélération aurait échappé à la détection. Selon cette hypothèse, ʻOumuamua se serait formé dans un nuage ​​moléculaire géant. Cependant, ce petit corps aurait-il pu survivre depuis son lieu de formation jusqu’au Système solaire ? C’est la question à laquelle ont voulu répondre des scientifiques du Center for Astrophysics | Harvard & Smithsonian (CfA) et du Korea Astronomy and Space Science Institute (Kasi).

Les icebergs d’hydrogène : des objets mort-nés

Les chercheurs ont publié le résultat de leur étude ce lundi 17 août dans The Astrophysical Journal Letters (en libre accès sur arXiv) et ont trouvé que l’objet interstellaire ne serait pas fait de glace de dihydrogène.

Selon Thiem Hoang, chercheur dans le groupe d’astrophysique théorique au Kasi et premier auteur de l’article : « La proposition de Seligman et Laughlin semblait prometteuse car elle pourrait expliquer la forme extrêmement allongée de ʻOumuamua ainsi que son accélération non gravitationnelle. Cependant, leur théorie est basée sur l’hypothèse que la glace de H2 pourrait se former dans des nuages moléculaires denses. Si cela est vrai, les objets de glace de H2 pourraient être abondants dans l’Univers et auraient donc des implications de grande portée. La glace de H2 a également été proposée pour expliquer la matière noire, un mystère de l’astrophysique moderne. Nous voulions non seulement tester les hypothèses de la théorie, mais aussi la proposition de matière noire. »

L’origine de ʻOumuamua demeure un mystère. Selon Avi Loeb, professeur de sciences à Harvard et coauteur de l’article, « L’endroit le plus probable pour fabriquer des icebergs d’hydrogène est dans les environnements les plus denses du milieu interstellaire. Ce sont des nuages moléculaires géants ». Cependant, pour ce chercheur, ces nuages sont à la fois trop éloignés et pas propices au développement d’icebergs d’hydrogène. Thiem Hoang indique qu’une explication habituelle pour la formation d’un corps céleste solide de taille kilométrique est de former d’abord des grains de taille micrométrique, puis que ces grains s’agglomèrent par des collisions collantes. Cependant, il précise que, dans le cas d’un iceberg d’hydrogène, cette théorie ne peut pas tenir : dans les régions à haute densité de gaz, le chauffage dû aux collisions de gaz peut rapidement sublimer le manteau d’hydrogène sur les grains, les empêchant de croître davantage.

Bien que l’étude ait exploré la destruction de la glace de H2 par de multiples mécanismes, dont le rayonnement interstellaire, les rayons cosmiques et le gaz interstellaire, la sublimation due au chauffage par la lumière des étoiles a l’effet le plus destructeur et, selon Avi Loeb, « la sublimation thermique par chauffage collisionnel dans les nuages moléculaires géants pourrait détruire les icebergs d’hydrogène moléculaire de la taille de ʻOumuamua avant qu’ils s’échappent dans le milieu interstellaire ». Cette conclusion exclut la théorie selon laquelle ʻOumuamua s’est rendu dans notre Système solaire depuis un nuage moléculaire géant et exclut en outre la proposition de boules de neige primordiales comme matière noire. Le refroidissement par évaporation dans ces situations ne réduit pas le rôle de la sublimation thermique par la lumière des étoiles dans la destruction des objets de glace de H2.

Bien que la nature de ʻOumuamua reste actuellement un mystère non résolu, Avi Loeb suggère qu’elle ne le restera pas longtemps, surtout si cet objet n’est pas seul : « Si ʻOumuamua fait partie d’une population d’objets similaires sur des trajectoires aléatoires, alors l’observatoire Vera-C.-Rubin, qui devrait voir sa première lumière l’année prochaine, devrait détecter environ un objet de type ʻOumuamua par mois. Nous attendrons tous avec impatience de voir ce qu’il trouvera. »

Sources

Réagissez à cet article en nous laissant un commentaire.
Profitez-en pour vous abonner  et suivre d’autres reportages tout aussi passionnants.